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a b s t r a c t

Transient energy transport in thin-layer films with a nonlinear thermal boundary resistance is analyzed
theoretically within the framework of the dual-phase-lag heat conduction model. An iterative finite
difference numerical method is used and is verified using a derived semi-analytical solution of the
problem. Effects of the thermo-physical properties on energy transport when a two-layer film is exposed
to a thermal pulse of certain duration and strength are presented. The thermal boundary resistance, the
heat flux and temperature gradient phase lags and the thermal conductivities and heat capacities all are
important factors that characterize energy transport through the interface and the temperature distri-
bution in the two layers. The maximum interfacial temperature difference that takes place in the tran-
sient process of thermal pulse propagation is found to be the proper choice to measure the perfect-ness
of the interface with a finite thermal boundary resistance. The results show that even with high values of
the thermal boundary resistance the maximum interfacial temperature difference can be very small
when the thermal pulse propagates from a high-thermal conductivity and heat capacity layer to a low-
thermal conductivity and heat capacity layer. For a certain range of the thermal conductivities and heat
capacities, the maximum interfacial temperature difference approaches zero even with high values of the
thermal boundary resistance. Thermal conductivities and heat capacities are much more important in
characterizing transient heat transfer through the imperfect interface than the phase lags of the heat flux
and temperature gradient.

� 2009 Elsevier Masson SAS. All rights reserved.
1. Introduction

The thermal resistance existing at the interface between two
materials has a significant effect on the design and performance of
devices using multilayer thin films such as superconductors and
microelectronic layer packages, where heat dissipation is a crucial
issue that limits the performance, reliability and further miniatur-
ization of these devices [1]. Thermal interface materials (TIM) that
reduce or eliminate the micro-gaps at the interface between
material layers [1,2] are used to reduce the thermal resistance in
order to have more efficient heat management in such devices. The
existence of a thermal resistance at the interface between adjacent
layers results in a temperature difference the magnitude of which is
in fact a measure of the temperature gradient at the interface. High
temperature gradients can cause a thermal damage if the difference
in temperature at the interface is not kept to a minimum. Hence,
adan), malnimr@just.edu.jo
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the choice of the materials with the proper thermal properties that
result in a minimum interfacial temperature difference (and hence
minimum interfacial temperature gradient) becomes crucial in the
design of thin film structures particularly when the designer does
not have much control over the reduction of the thermal boundary
resistance.

Prediction of the thermal boundary resistance both theoretically
and experimentally has received much attention [3–6] with the
advancements of miniaturization technology. The diffuse mismatch
model (DMM) which assumes that all phonons incident on the
interface will scatter, and the acoustic mismatch model (AMM)
which assumes no phonon scattering [3,7] are both used to predict
the thermal boundary resistance at the interface between films
where in both models the thermal resistance varies inversely with
the third power of the temperature [3,8].

The amount of heat flowing through the interface between two
material layers as well as the temperature gradient at the interface
are however functions of not only the thermal boundary resistance
but also of the thermo-physical properties of the materials. The use
of suitable materials with certain thermo-physical properties can
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Nomenclature

cj heat capacity of layer j, J/m3 K
f time dependent boundary heat flux, W/m2

F dimensionless time dependent boundary heat flux
F Laplace transform of F
kj dimensionless thermal conductivity ratio of layer j,

~kj=kr

L domain width, m
[j dimensionless width of layer j, L=

ffiffiffiffiffiffiffiffiffiffiffi
ar~sqr

p
p Laplace transform parameter
q! heat flux vector, W/m2

q heat flux, W/m2

Q dimensionless heat flux, q=½crTr
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ar=~sqr

p
�

Q Laplace transform of Q
r! position vector

Rb dimensionless thermal boundary resistance
T temperature, K
Tj

o initial temperature of layer j, K
x x-coordinate

Greek letters
aj thermal diffusivity of layer j, m2/s
aj dimensionless thermal diffusivity, aj=ar

DqI temperature difference at the contact interface
DqI;max maximum interfacial temperature difference
3 convergence criterion
z dimensionless distance, x=

ffiffiffiffiffiffiffiffiffiffiffi
ar~sqr

p
[j dimensionless width of layer j, L=

ffiffiffiffiffiffiffiffiffiffiffi
ar~sqr

p
h dimensionless time, t=~sqr

q dimensionless temperature, ðT � TrÞ=Tr

qo
j dimensionless initial temperature of layer j

q Laplace transform of q
~sqj heat flux phase lag of layer j, s
sqj dimensionless heat flux phase lag of layer j, ~sqj=~sqr
~sTj temperature gradient phase lag of layer j, s
sTj dimensionless temperature gradient phase lags for

layer j, ~sTj=~sqr

k a constant parameter, W/m2 K4

Subscripts
j layer (or domain) j
r reference value

Superscripts
p previous iteration
n Previous time level
nþ 1 Current time level
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have a significant role in determining the amount of heat flow and
temperature gradient at the interface between layers in contact
with a thermal boundary resistance.

Applications where extremely short times, high power intensity
or cryogenic temperatures are experienced mandates modeling
transient heat transfer on a micro-scale level in space and time, since
the parabolic heat diffusion model is known to break down in such
applications. The dual-phase-lag (DPL) heat conduction model
developed and experimentally supported by Tzou [9,10] accounts for
spatial and temporal effects in both macro- and micro-scale heat
transfer in a one-temperature formulation and it takes the form:

q!
�

r!; t þ ~sq

�
¼ �~kVT

�
r!; t þ ~sT

�
The quantities ~sq and ~sT in this model are respectively, the phase
lags of the heat flux and the temperature gradient. The DPL model
reduces to the classical Fourier’s heat diffusion model, thermal
wave model, phonon–electron interaction, and phonon scattering
models by assigning the proper values to the phase lags ~sq and ~sT .
The DPL model therefore covers a wide range of transient thermal
responses from macroscopic to microscopic scales in both time and
space. The classical parabolic Fourier’s heat diffusion is recovered
from the DPL when the two phase- lags ~sq and ~sT are equal, where
the heat flux and the temperature gradient occur simultaneously.
The thermal wave model that describes the wave nature of energy
transport is also a special case of the DPL model by setting ~sT ¼ 0
with ~sq > 0. The phonon–electron interaction model that results in
enhanced or over-diffusion nature of energy transport is obtained
with non-zero values of both ~sq and ~sT with ~sq < ~sT [9]. The DPL
model also reduces to the phonon-scattering model by relating ~sq

and ~sT in the dual-phase-lag model to the relaxation times in the
phonon-scattering model [9]. The energy equation within the
framework of the DPL model with ~sq > ~sT > 0 describes the
combined diffusion- and thermal wave- mechanisms of energy
transport where the relative significance of the two mechanisms is
controlled by the values of ~sq and ~sT .
Transient heat transfer in multilayered materials with perfect
(zero thermal boundary resistance) and imperfect interfaces has
been studied using different micro-scale heat transfer models
including the DPL model. Ho et al. [11] analyzed heat transfer with
a pulsed volumetric heat source in multilayered structure in perfect
thermal contact and showed the effect of the temperature gradient
phase lag on energy transport through the perfect interface using
the lattice Boltzmann numerical method. Al-Huniti and Al-Nimr
[12] investigated the thermo-elastic behavior of a two-layered
metallic thin plate in perfect thermal contact using the dual-phase-
lag model. Lee and Tsai [13] used the DPL model to study the
thermal behavior in a two-layered semi-infinite layers with inter-
facial contact conductance (the reciprocal of the thermal resis-
tance) using a simple temperature jump condition at the interface.
They examined the lagging behavior of a two-layer material, and
the effect of the constant contact conductance and the thickness of
the surface layer on heat transfer in the structure. The DPL model
was also used to investigate the thermal behavior of two-layered
planar thin slabs in perfect contact with a periodic heating source
and a periodic boundary temperature [14]. Closed-form solutions
were derived to study the deviations among the predictions of the
classical heat diffusion, thermal wave and the DPL models. A study
of thermal wave propagation in a composite sphere with perfect
contact subject to a sudden temperature change on the outer
surface was investigated by Tsai and Hung [15] using the hyperbolic
heat conduction model. Lor and Chu [8] used the thermal wave
model to study the effect of the interfacial thermal resistance on
heat transfer in a composite medium using a radiation boundary
condition at the interface. Liu [16] investigated the thermal
behavior of layered films with a nonlinear interfacial thermal
resistance using a hybrid application of the Laplace transform and
control volume techniques. Heat transfer in his analysis was
induced by a pulsed volumetric heat source adjacent to the exterior
surface of one layer. His results show that the effect of the thermo-
physical properties on energy transport through the interface
gradually decreases with increasing the interfacial thermal
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resistance. The hyperbolic two-step model was also used by Liu [17]
to analyze the thermal behavior of multilayer metal thin films with
a zero interfacial thermal boundary resistance. The thermal wave
model was used by Khadrawi et al. [18] to study the thermal
behavior of perfect and imperfect contact composite slabs with
a constant interfacial thermal resistance.

The DPL model is used in this work to study transient heat
transfer processes in two-layer thin films with nonlinear thermal
boundary resistance. For a vanishing thermal boundary resistance,
the interfacial temperature jump approaches zero and the interface
behaves perfectly, while for an infinite value of the thermal
boundary resistance, the interface experiences the highest
temperature jump since the interface behaves as a perfect insulator.
One choice to measure the relative perfect-ness of the interface
with a finite nonlinear thermal boundary resistance is thus the
interfacial temperature difference. The temperature jump and heat
flux at the imperfect interface are dependent on the value of the
thermal boundary resistance, the thermal conductivities and heat
capacities of the two layers as well as the nature of energy transport
represented by the phase lags of the heat flux and temperature
gradient as discussed previously. The concentration in this work is
particularly on the effects of the thermo-physical properties and
the nature of energy transport on the interfacial temperature jump
as well as temperature and heat flux distributions in two-layer thin
films with a temperature dependent thermal boundary resistance
when one layer is exposed to an external thermal pulse of short
duration and finite strength.

2. Physical model and problem formulation

The problem geometry in this work is as shown in Fig. 1. The
geometry is made up of a planar slab of two layers in contact with
a thermal boundary resistance at the interface between the two
layers. The left surface of layer 1 is assumed to have negligible heat
loss (insulated), while the right surface of layer 2 is exposed to
a time-dependent thermal pulse with a certain duration and
strength. The energy equation for layer j of the two-layer slab
shown in Fig. 1 is:

cj
vTj

vt
þ

vqj

vx
¼ 0; j ¼ 1;2 (1)

where qj is given by the dual-phase-lag heat conduction model [9]:

qj þ ~sqj
vqj

vt
¼ �~kj

"
vTj

vx
þ ~sTj

v2Tj

vtvx

#
; j ¼ 1;2 (2)

and the boundary conditions are:

q1ðx;0Þ ¼ 0 (3)
Fig. 1. Illustration of problem geometry and boundary conditions.
q2ðL1 þ L2; tÞ ¼ f ðtÞ (4)

where f(t) is a time-dependent boundary heat flux.
The two layers are assumed to be initially at uniform

temperatures:

Tjðx;0Þ ¼ To
j ; j ¼ 1;2 (5)

At the interface between the two layers, the heat flux is
continuous while the thermal boundary resistance causes an
interfacial temperature difference that is dependent on the thermal
resistance. The interfacial conditions are thus written as:

q1ðL1; tÞ ¼ q2ðL1; tÞ (6)

q1ðL1; tÞ ¼ ~k
h
T4

1 ðL1; tÞ � T4
2 ðL1; tÞ

i
(7)

where ~k is a constant parameter dependent on the material prop-
erties of the films in contact [8,17]. Using the dimensionless
variables:

h ¼ t
~sqr
; z ¼ xffiffiffiffiffiffiffiffiffiffiffiffi

ar ~sqr
p ; q ¼ T�Tr

Tr
;

Q ¼ q

crTr
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ar=~sqr

p ; aj ¼
~aj

ar
; kj ¼

~kj

kr
; sqj ¼

~sqj

~sqr
; sTj ¼

~sTj

~sqr
ð8Þ

equations (1)–(7) are re-written in dimensionless form as:

vqj

vh
þ

aj

kj

vQj

vz
¼ 0 (9)

Qj þ sqj
vQj

vh
þ kj

vqj

vz
þ sTjkj

v2qj

vhvz
¼ 0 (10)

Q1ðz;0Þ ¼ 0 (11)

Q2ð[1 þ [2; hÞ ¼ FðhÞ (12)

qjðz;0Þ ¼ qo
j ; j ¼ 1;2 (13)

Q1ð[1;hÞ ¼ Q2ð[1; hÞ (14)

Q1ð[1;hÞ ¼ k
h
ðq1ð[1; hÞ þ 1Þ4�ðq2ð[1; hÞ þ 1Þ4

i
(15)

where,

k ¼
~kT3

r

cr
ffiffiffiffiffiffiffiffiffiffiffiffiffi
~sqr=ar

p ; [j ¼
Ljffiffiffiffiffiffiffiffiffiffiffi
ar~sqr

p (16)

3. Numerical solution method

Differentiating Eq. (9) with respect to z and substituting the
result in Eq. (10) results in the following equation:

sTjaj
v2Qj

vz2 � Qj ¼ sqj
vQj

vh
þ kj

vqj

vz
(17)

The descritization of Eq. (17) gives a tri-diagonal system of
equations that can be efficiently solved using a tri-diagonal system
solver as shown below. Using Crank–Nicolson Scheme, the descri-
tization of Eqs. (17) and (9) gives:
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AiQ
nþ1
j;i�1 � BiQ

nþ1
j;i þ CiQ

nþ1
j;iþ1 ¼ �AiQ

n
j;i�1 þ EiQ

n
j;i � CiQ

n
j;iþ1

þ S1

�
dqn

j;i þ dqp
j;i

�
ð18Þ

qnþ1
j;i ¼ qn

j;i � S2

�
dQn

j;i þ dQnþ1
j;i

�
(19)

Ai ¼
sTjajDh

Dz2 ; Bi ¼
2sTjajDh

Dz2 þ Dhþ 2sqj;

Ci ¼
sTjajDh

Dz2 ; Ei ¼ Bi � 4sqj ð20Þ

S1 ¼
kjDh

2Dz
; S2 ¼

ajDh

4kjDz
(21)

dfj;i ¼

8<
:
�3fj;i þ 4fj;iþ1 � fj;iþ2; i ¼ 1
fj;iþ1 � fj;i�1; 1 < i < MI
3fj;i � 4fj;i�1 þ fj;i�2; i ¼ MI

9=
;; for layer 1

(22)

dfj;i ¼

8<
:
�3fj;i þ 4fj;iþ1 � fj;iþ2; i ¼ MI
fj;iþ1 � fj;i�1; MI < i < M
3fj;i � 4fj;i�1 þ fj;i�2; i ¼ M

9=
;; for layer 2

(23)

where dfj;i stands for dqp
j;i; q

n
j;i; q

nþ1
j;i , and MI is the grid point at the

interface. The above equations are solved iteratively. Starting from
an initial guess for qp

j;i with fn
j;i known from a previous time step, the

tri-diagonal system of equations (18) is solved for the heat flux at
the current time level, Qnþ1

j;i . Equation (19) is then solved for the
temperature distribution, qnþ1

j;i and is compared with the initial
guess. If jqnþ1

j;i � qp
j;ij < 3, convergence is achieved and the solution is

advanced to the next time level, otherwise, the procedure is
repeated after setting qp

j;i ¼ qnþ1
j;i until convergence is achieved for

all grid points. Once convergence is achieved, the temperature-
dependent thermal boundary resistance Rbðk; q1; q2Þ is calculated
by noting that Eq. (15) can be re-written as
Rbðk; q1; q2Þ ¼ ½q1ð[1; hÞ � q2ð[1; hÞ =Q1ð[1; hÞ� .

4. Verification of the numerical procedure

The numerical scheme in the previous section is used to develop
a Computer code for the analysis of transient energy transport in
the two-layer film shown in Fig. 1. To check the accuracy of the
numerical scheme and verify the results, the governing equations
are solved using a semi-analytical method as explained below. The
interfacial condition (Eq. (15)) can be re-written as:

Q1ð[1; hÞ ¼ k½q1 þ q2 þ 2�
h
ðq1 þ 1Þ2þðq2 þ 1Þ2

i
½q1 � q2� (24)

or,

Q1ð[1; hÞ ¼
q1 � q2

Rbðk; q1; q2Þ
(25)

where Rbðk; q1; q2Þ is the nonlinear temperature-dependent
thermal boundary resistance given as:

Rbðk; q1; q2Þ ¼
1

k½q1 þ q2 þ 2�
h
ðq1 þ 1Þ2þðq2 þ 1Þ2

i (26)

The interface approaches the perfect conditions with
q1ð[1; hÞ ¼ q2ð[1;hÞ and Q1ð[1; hÞ ¼ Q2ð[1; hÞ as k/N

(i.e., Rbðk; q1; q2Þ/0). Hence, a semi-analytical solution can be
obtained using the Laplace transform method with a perfect
contact interface ðRbðk; q1; q2Þ ¼ 0Þ as well as treating the interface
as a perfect insulator ðRbðk; q1; q2Þ ¼ NÞ and the numerical scheme
in the previous section can be assessed using these two limiting
cases. These two limiting conditions however eliminate completely
the nonlinear interfacial condition. Another approach of verifica-
tion of the numerical scheme is to solve the governing equations
using the Laplace transform method with the linearized form of the
interfacial condition (Eq. (25)). However, the solution obtained is
valid only for either very low (though non-zero) values of the
thermal resistance Rb (i.e., very high values of the parameter k) or
infinitely high values of Rb. In this work and since the results all
pertain to finite values of k, the later path is taken even though it
involves much algebraic manipulations and computational time.
Taking the Laplace transform of Eqs. (9) and (10), and applying the
initial conditions, qjðz;0Þ ¼ 0, Qjðz;0Þ; j ¼ 1;2, one obtains after
some manipulations the following equation for layer j:

d2qj

dz2 � A2
j qj ¼ 0 (27)

where,

Aj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p
�
1þ sqjp

�
aj
�
1þ sTjp

�
s

(28)

and p is the Laplace transform parameter given by:

qjðz; pÞ ¼
Z N

0
qjðz; hÞe�phdh (29)

The solution to Eq. (27) is:

qjðz; pÞ ¼ D1je
Ajz þ D2je

�Ajz (30)

and the heat flux is given by:

Qjðz;pÞ ¼ �
pkj

ajAj

�
D1je

Ajz � D2je
�Ajz

�
(31)

The constants D1j; D2j are found by applying the boundary
conditions as given by Eqs. (11), (12), (14) and (25) in the Laplace
transform domain. This results in the following equations:

D21 ¼ D11 (32)

a1D11 � D12 � a2D22 ¼ 0 (33)

a3D11 � a4D12 þ a5D22 ¼ 0 (34)

D12 � a6D22 ¼ a0FðpÞ (35)

The simultaneous solution to Eqs. (33)–(35) gives:

D11 ¼
ða5 þ a2a4Þa0F

a1ða5 � a4a6Þ þ a3ða2 þ a6Þ
(36)

D12 ¼
ða2a3 þ a1a5Þa0F

a1ða5 � a4a6Þ þ a3ða2 þ a6Þ
(37)

D22 ¼
ða1a4 � a3Þa0F

a1ða5 � a4a6Þ þ a3ða2 þ a6Þ
(38)

where,
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Fig. 2. Temperature and heat flux distributions at h ¼ 0:8: A comparison between
numerical and Laplace transform solution methods for a high interfacial resistance.
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a0 ¼ �
a2A2e�A2ð[1þ[2Þ

k2p
; a1 ¼

�
1þ Rbk1p

a1A1

�
eðA1�A2Þ[1

þ
�

1� Rbk1p
a1A1

�
e�ðA1þA2Þ[1 ð39Þ

a2 ¼ e�2A2[1 ; a3 ¼
k1

a1A1

�
1� e�2A1[1

�
;

a4 ¼
k2

a2A2
eðA2�A1Þ[1 ð40Þ

a5 ¼
k2

a2A2
e�ðA1þA2Þ[1 ; a6 ¼ e�2A2ð[1þ[2Þ (41)

The Laplace inversion of the above equations is computed using
the Riemann sum approximation given by [9]:

Fðz; hÞyegh

h

"
1
2

Fðz;gÞ þ Re
XN

n¼1

F

�
z;gþ inp

h

�
ð�1Þn

#
(42)

where F;F stands for q; q or Q ;Q respectively, i ¼
ffiffiffiffiffiffiffi
�1
p

and
ghy4:7 gives the most satisfactory results in terms of convergence
rate [9] of the Riemann sum. The Riemann sum approximation
technique is a common and reliable method and as stated in [9] it
has been rigorously examined and proved to give satisfactory
results in terms of convergence. A computer code is developed to
solve the above equations for the temperature and heat flux
distributions. Since the thermal boundary resistance (Eq. (26)) is
a function of temperature, an iteration procedure is required. This is
summarized below:

1. Assume a value for Rb.
2. Calculate the temperature distribution.
3. Calculate Rb from Eq. (26) using the temperatures calculated in

step (2).
4. If the absolute difference between the assumed and calculate

values of Rb falls below a specified tolerance, convergence is
achieved, otherwise step (2) is repeated with the calculated
value of Rb and the procedure is continued until convergence is
achieved.

The grid size and the convergence criterion are taken as
Dz ¼ 0:002, 3 ¼ 10�10 for both solution methods and the time
step is taken as Dh ¼ 5� 10�6. In this work, the thermal diffu-
sivities of the two layers are taken as a1 ¼ a2 ¼ 1:0, while the
thermal conductivity of layer 1 is taken as k1 ¼ 1:0, and the widths
of the two layers are taken as [1 ¼ [2 ¼ 0:5. The initial tempera-
tures of the two layers are set as q1ðz;0Þ ¼ q2ðz;0Þ ¼ 0 and the
phase lags of the heat flux are taken as sq1 ¼ sq2 ¼ 1:0 unless
otherwise stated on the relevant plots. The temperature gradient
phase lags are taken as sT1 ¼ sT2 ¼ 0:01 forcing the DPL model to
be more hyperbolic with thermal wave nature of energy transport.
This choice of phase lags ðsT << sqÞ imposes the most stringent
resolution requirement in this study, and a satisfactory solution
with this choice is necessarily adequate for any choice with
sq ¼ 1:0 and sT > 0:01.

The time dependent thermal pulse on the outer surface of layer
2 is taken in this study as a sinusoidal pulse of the form:

f ðtÞ ¼
	
�qssinðpt=tsÞ; 0 � t � ts

0; t > ts
(43)

where qs is the strength of the thermal pulse, and ts is the pulse
duration. The minus sign indicates that the heat pulse is in the
negative z-direction. A sinusoidal thermal pulse is used in this
study though any other shape of the pulse could be used that can be
in turn represented by a Sine or Cosine Fourier series. The use of the
sinusoidal thermal pulse (Eq. (43)) can resemble a laser pulse that is
widely used in engineering applications. The dimensionless form of
f(t) is:

FðhÞ ¼
	
�Qssinðph=hsÞ; 0 � h � hs

0; h > hs
(44)

The thermal pulse duration and intensity are taken as hs ¼ 0:2,
Qs ¼ 1:0 throughout the whole study.

A comparison between the finite difference numerical solution
and the semi-analytical Laplace transform-based solution is made
in Fig. 2, where both the temperature and heat flux distributions in
the two-layer structure are shown at time h ¼ 0:8. At this time, the
thermal pulse has already interacted with the interface. With the
values chosen for the phase lags of the heat flux and temperature
gradient, the wave nature of energy transport is dominant and it
takes around h ¼ 0:5 for the thermal pulse generated at the right
boundary of layer 2 to reach the interface. Fig. 3 shows the variation
with time of the temperature difference and heat flux at the
interface together with the thermal resistance, corresponding to
those shown in Fig. 2. The duration taken in Fig. 3 is h ¼ 2:0, where
the thermal pulse has propagated through the two layers, reflected
back from the left surface of layer 1 and reached the outer surface of
layer 2. The thermal boundary resistance corresponding to k ¼ 1:0
at the initial temperatures q1ðz;0Þ ¼ q2ðz;0Þ ¼ 0 calculated from
Eq. (26) is Rb ¼ 0:25. Since a value of k ¼ 1:0 results in a relatively
large interfacial resistance, a considerable difference between the
two solutions is observed, though both solutions qualitatively
capture the thermal pulse transmission and reflection from the
interface. This is because the Laplace transform solution method
with the linearization of the interfacial condition is only accurate
when Rbðk; q1; q2Þ/0 where the interface approaches the perfect
conditions. To ensure that the large difference between the two
solutions is due to the linearization of the nonlinear interfacial
condition Rb not the numerical method, the previous computations
are repeated in Figs. 4 and 5 but with k ¼ 50:0. The thermal
boundary resistance corresponding to k ¼ 50:0 at the initial
temperatures q1ðz;0Þ ¼ q2ðz;0Þ ¼ 0 is calculated from Eq. (26) as
Rb ¼ 0:005, and since Rbwq�3

I , this value is the highest during the
process of energy transport. For this low value of thermal resis-
tance, the interface approaches the perfect conditions with almost
zero temperature difference at the interface. The difference
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between the two solutions is unnoticeable as is clear from Figs. 4
and 5. The numerical solution method is thus capable of resolving
the thermal wave propagation in the two layers and thermal wave
transmission and reflection at the interface quite accurately.
5. Results and discussion

Before proceeding in the analysis of the effects of the thermo-
physical properties of the two layers on energy transport through
the interface, it is noticed from Figs. 4 and 5 that for a low-thermal
boundary resistance, the interface transmits most of the thermal
pulse with a negligible interfacial temperature difference. The
temperature dependent thermal boundary resistance is the highest
at the initial temperatures (Fig. 5). The interfacial temperature
difference DqI remains almost zero until around hz0:4 where the
thermal pulse has not yet reached the interface. Hence, the thermal
boundary resistance remains almost constant during this period.
The first sharp change of DqI in the range hz0:4 and hz0:8 is due
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the fact that the thermal wave has started passing through the
interface towards the left surface of layer 1. This is accompanied by
a sharp change in the thermal resistance as both q1; q2 become
higher than their respective initial values. The second sharp change
in DqI and consequently in Rb starts at around hz1:3 where the
reflected thermal wave from the left surface of layer 1 has reached
the interface.

In the following analysis, the effects on energy transport of the
temperature-dependent thermal boundary resistance, thermal
conductivities, and phase lags of the two layers are investigated.
Fig. 6 shows the temperature distribution at h ¼ 0:8 in the two-
layer slab with similar materials for different values of the
parameter k. Thermal wave reflections and transmissions at the
interface are clearly shown, where the thermal wave reflected from
the interface propagates to the right, while the wave transmitted
through the interface propagates towards the left surface of layer 1.
For k ¼ 0:001 (high-thermal resistance), the interfacial tempera-
ture difference is the highest, where most of the thermal pulse is
reflected from the interface towards the outer surface of layer 2
with only little energy transmitted through the interface. The value
of k ¼ 1:0 (low-thermal resistance) conversely results in the
lowest interfacial temperature difference, where most of the
thermal pulse is transmitted through the interface. The value of
the parameter k and hence the thermal boundary resistance has
a considerable effect on energy transport and temperature varia-
tions in the two layers.

To see the effect of the thermal conductivities and heat capac-
ities of the two layers on energy transport in the two-layer slab,
a snapshot (at h ¼ 0:8) of the temperature distribution is shown in
Fig. 7 for different values of the thermal conductivity of layer 2 and
with a high value of thermal resistance ðk ¼ 0:001Þ. With the
parameters chosen, the thermal conductivity and heat capacity
ratios of the two layers are equal, (i.e., k2=k1 ¼ c2=c1). The graph
corresponding to k2 ¼ 0:1 in Fig. 7 shows the highest interfacial
temperature difference with a considerable portion of the thermal
pulse crossing the interface and propagating towards the outer
surface of layer1 even with a high value of the interfacial resistance.
The interface also reflects a positive wave followed by a negative
wave both propagating towards the outer surface of layer 2 where
the temperature in some portions of layer 2 drops below the initial
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temperature. The graph corresponding to k2 ¼ 100:0 on the other
hand shows a vanishing interfacial temperature difference even
though the thermal resistance is high. The transmitted and reflec-
ted thermal waves are also of vanishing strengths. Fig. 7 also shows
that as the value of k2 (and hence c2/c1) increases, both the trans-
mitted and reflected waves become weaker with a decreasing role
of the interfacial resistance. This shows that when a thermal pulse
propagates from a layer of high-thermal conductivity and heat
capacity to a low-thermal conductivity and heat capacity layer, the
interface approaches the perfect contact conditions even with high
values of thermal boundary resistance. On the other hand, propa-
gation of a thermal pulse from a low conductivity and heat capacity
towards a high conductivity and heat capacity layer results in
higher interfacial temperature difference. This is due to the fact that
with increasing the heat capacity and thermal conductivity, layer 2
behaves more as a heat sink with increasing capability to absorb the
energy transmitted via the boundary heat flux. This results in
decreasing the amplitude of the thermal pulse propagating towards
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Fig. 6. Temperature distribution at h ¼ 0:8 in a two-layer film of the same material for
different values of the interfacial resistance.
the interface (less temperature rise in layer 2) and hence less
interfacial temperature difference. A more clear representation of
the effect of the thermal conductivities and heat capacities on the
temperature difference and heat flux at the interface is shown in
Fig. 8 where the variation with time of the interfacial quantities is
shown during the propagation of the thermal pulse from layer 2
towards layer 1. The time duration is taken as h ¼ 1:0 to ensure
that the thermal pulse initiated at h ¼ 0:0 at the right surface of
layer 2 has reached the left surface of layer 1 for any choice of the
temperature gradient and heat flux phase lags. As the thermal
conductivity of layer 2 is increased, both the interfacial temperature
difference and the heat flux crossing the interface decrease (Q is
negative since the thermal pulse propagates in the negative z

direction). The peak values of the interfacial quantities occur at
around hz0:6 where the thermal pulse (of durationhs ¼ 0:2) has
completely interacted with the interface.

Fig. 8 however represents a case with the two layers having the
same values of sT and sq. Next, the effect of the temperature
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gradient and heat flux phase lags on heat transfer at the imperfect
interface is investigated. The temporal variation of the interfacial
quantities DqI and QI is represented in Fig. 9 for a thermal pulse
propagating from a low sT layer ðsT2 ¼ 0:01Þ to a higher sT layer
ðsT1 ¼ 0:1Þ. The thermal conductivities and thermal resistance are
the same as in Fig. 8. Comparing Figs. 8 and 9, the phase lags clearly
have some effect on the interfacial quantities with higher values of
these quantities when the thermal pulse propagates from a lower-
to-higher sT layer. The effect of the phase lags on the temporal
variation of DqI and QI is further studied as shown in Figs. 10–13,
where the thermal pulse propagates through layer 2 towards layer
1 with sT2 � sT1 in Fig. 10 and sT2 � sT1 in Fig. 11, while in Figs. 12
and 13 the thermal pulse propagates through layer 2 towards layer
1 with sq2 � sq1 and sq2 � sq1 respectively. The values of k2 and k

are the same in these four figures. With the parameters chosen, the
heat flux at the interface is the same for the four cases shown in
these figures where the four curves of QI corresponding to the four
cases coincide, while the interface shows a variable response in
terms of the interfacial temperature difference. In other words, the
same heat flux crossing the interface results in different values of
the interfacial temperature difference depending on the phase lags
of the two layers. The results presented in Figs. 8–13 thus clearly
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Fig. 9. Effect of the thermal conductivity of layer 2 on the temporal interfacial
temperature difference and heat flux for sT1 ¼ 0:1 and sT2 ¼ 0:01.
show that within the framework of the DPL model the interfacial
temperature difference DqI is the proper choice to measure the
perfect-ness of the interface rather than the interfacial heat flux QI .
It can be also noticed from these figures that the peak values of DqI

and QI take place at different times. This may be explained by the
fact that within the DPL model, the heat flux lags behind the
temperature gradient when sq > sT , and the temperature gradient
lags behind the heat flux when sT > sq, while the heat flux and
temperature gradient are simultaneous when sT ¼ sq. The
response of the interface to the thermal pulse is instantaneous
when the thermal pulse propagates from layer 2 towards layer 1
with sT2 � sT1 (Fig. 11), where the nature of energy transport is
enhanced diffusion with sT2 > sq2. The interfacial quantities DqI

and QI reach their peak values at around hw0:12 even before the
termination of the thermal pulse. On the other hand, with sT2 � sT1
(Fig. 10), thermal wave nature dominates the energy transport
process ðsT2 < sq2Þ, where it takes around hz0:35 for the thermal
pulse to interact with the interface, and the interfacial quantities
peak at around hw0:6.

The conclusions that are drawn from the previous analysis is
that in addition to the thermal boundary resistance, the thermal
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conductivities and the phase lags play important roles in deter-
mining the interfacial temperature difference and the heat flux
passing through the interface. Propagation of a thermal pulse from
a high-to-low thermal conductivity layers results in lower interfa-
cial temperature difference and less energy crossing the interface.
In addition, higher difference between the temperature gradient
phase lags of the two layers, results in lower interfacial temperature
difference (Figs. 10 and 11), whereas for sq2 � sq1 (Fig. 12), higher
difference between the heat flux phase lags results in higher
maximum interfacial temperature difference, while for sq2 � sq1,
higher difference between the heat flux phase lags results in lower
maximum interfacial temperature difference. Moreover, Figs. 10–13
show that the effect of the phase lags of the heat flux and
temperature gradient are comparable. The interface is perfect when
the thermal boundary resistance Rb/0 or k/N, where in this case
DqI/0 and Q1 ¼ Q2 at the interface. The previous results partic-
ularly those shown in Figs. 8 and 9 show that DqI approaches zero
even with a relatively high-thermal boundary resistance (low k).
Due to this fact in addition to the results shown in Figs. 10–13,
the interfacial temperature difference is considered to be the
proper choice to measure the relative perfect-ness of the interface.
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Fig. 13. Temporal variation of the temperature difference and heat flux at the interface
for k ¼ 0:001; k2 ¼ 0:01 and sq2 � sq1.
Figs. 8–13 show that the interfacial temperature difference takes on
a unique maximum value during the passage of the thermal pulse
through the interface. Thus the maximum value of the interfacial
temperature difference that takes place during the thermal pulse
propagation from layer 2 towards layer 1 is taken as a measure of
the relative perfect-ness of the interface. Extensive computations
are performed to locate the maximum interfacial temperature
difference DqI;max for different values of k; k2; sT1; sT2 and the results
are presented in Figs. 14–16. Figs. 14 and 15 indicate that the values
of the phase lags have much less effect on DqI;max than those of k

and k2. As k2 increases DqI;max decreases with a decreasing effect of
the thermal resistance ðkÞ, so that when k2 � 10, DqI;max/0 where
the value of k becomes insignificant and the behavior of the inter-
face approaches that of a perfect interface regardless of the value of
the interfacial resistance. As k2 decreases DqI;max increases where
the increase in DqI;max is governed by the thermal resistance. Fig. 16
shows the variation of DqI;max with k for different values of k2.
Clearly as k increases (thermal resistance decreases) or k2 increases
the interface approaches the perfect conditions, and with k2 ¼ 10,
DqI;max/0 for the whole range of k shown.
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6. Conclusions

Analysis of energy transport in two-layer thin films with
a nonlinear thermal boundary resistance is performed using an
iterative finite difference numerical method that is second order
accurate in both time and space. The numerical solution method is
verified using a derived semi-analytical solution. The concentration
in this work is on the effects of the thermo-physical properties on
energy transport in a two-layer planar slab with a temperature
dependent thermal boundary resistance when one layer is exposed
to an external thermal pulse.

The interfacial thermal boundary resistance, the heat flux and
temperature gradient phase lags and the thermal conductivities
and heat capacities are all important factors that characterize and
quantify energy transport through the interface and temperature
distribution in the two layers. Since the dependency of the thermal
boundary resistance on temperature is Rbwq�3, it attains its
highest value at the initial temperatures when heat is transferred to
the composite geometry and it starts decreasing as the tempera-
tures at the interface increase due to heat transfer. In the two
extremes when Rb/0 and Rb/N, the interfacial temperature
difference respectively approaches zero with perfect contact
conditions, and the largest possible difference where the interface
behaves as a perfect insulator with vanishing heat flux crossing it.
However, the interfacial temperature difference is considerably
influenced by the thermo-physical properties of the layers as well
as the nature of energy transport in the two layers. The results show
that the thermal conductivities and heat capacities have much
more effect on energy transport in the two-layer slab than those of
the phase lags of the temperature gradient and heat flux. The
maximum interfacial temperature difference DqI;max during
thermal pulse propagation from one layer into another through the
interface is chosen to measure the relative perfect-ness of
the interface. The results show that even with high values of the
thermal boundary resistance the maximum interfacial temperature
difference can be very small when the thermal pulse propagates
from a high-thermal conductivity and heat capacity layer to a low-
thermal conductivity and heat capacity layer, and when
k2=k1 ¼ C2=C1 � 10, results show that the maximum interfacial
temperature difference DqI;max/0. On the other hand, propagation
of a thermal pulse from a low-thermal conductivity and heat
capacity layer to a high-thermal conductivity and heat capacity
layer increases the interfacial temperature difference.
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